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FOREWORD 

The work reported herein was done at the request of the Air Force 
Weapons Laboratory (AFWL),   Research and Technology Division (RTD), 
Air Force Systems Command {AFSO under Program Element 62405064, 
Project 5797,   Task 579712. 

The results of the tests presented were obtained by ARO,   Inc.  (a 
subsidiary of Sverdrup and Parcel,   Inc. ),  contract operator of the 
Arnold Engineering Development Center (AEDC),   AFSC, Arnold Air Force 
Station,  Tennessee,   under Contract AF40(600)-1200.    The tests were con- 
ducted from September 13 to 15,   1965 under ARO Project No,  VA0608,   and 
the manuscript was submitted for publication on November 9,   1965. 

This technical report has been reviewed and is approved. 

Darreid K.  Calkins Jean A.  Jack 
Major,   USAF Colonel,   USAF 
AF Representative, VKF DCS/Test 
DCS/Test 
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ABSTRACT 

Tests were conducted in the 40-in.   supersonic tunnel of the von 
Karman Gas Dynamics Facility to determine the dynamic stability 
characteristics of a 1/5-scale model of the Big Q air-to-air missile. 
Data were obtained at Mach numbers from 1. 49 to 3. 99 at the model 
trim angle of attack and at plus and minus 1 to 2 deg from trim at a 
near constant Reynolds number of 8 x 10°,  based on model length. 
The effects of Mach number and canard angle on the damping-in-pitch 
derivatives and effective slope of the pitching-moment curve at the 
trim angle of attack are presented. 

in 
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SECTION I 

INTRODUCTION 

Tests were conducted on a 1/5-scale model of the Big Q air-to-air 
missile to determine its dynamic stability characteristics at Mach num- 
bers ranging from 1.5 to 4 and canard angles of 0,   5,   10,   and 15 deg. 
Static stability tests were conducted on this model in June 1965 over 
essentially the same range of test conditions and with the same canard 
angles (Ref.   1).    The model was tested at a near constant Reynolds 
number of 8 x 10°,   based on model length,   at its trim angle of attack 
(at) and ±1 to ±2 deg from a\. 

The tests,  as outlined in Table I,  were conducted using a small 
amplitude (±3 deg),   free oscillation,   cross-flexure pivot balance.    Data 
obtained at all Mach numbers and canard angles at the model trim angle 
of attack are presented. 

SECTION It 
APPARATUS 

2.1 WIND TUNNEL 

The 40-in.  supersonic tunnel (Gas Dynamic Wind Tunnel,   Super- 
sonic (A)) is a continuous,  closed-circuit,  variable density wind tunnel 
with an automatically driven flexible plate-type nozzle and a 40- by 
40-in. test section.    The tunnel operates at Mach numbers from 1.5 to 6 
at maximum stagnation pressures from 29 to 200 psia,   respectively,  and 
stagnation temperatures up to 300CF (M^ = 6).   Minimum operating pressures 
are about one-tenth of the maximum at each Mach number.   A description 
of the tunnel and airflow calibration information may be found in Ref.  2. 

2.2 MODEL 

Details of the Big Q model are shown in Fig. 1.   The model (Fig.  2), 
supplied by AFWL,  has a 9-deg half-angle,  blunted conical nose with 
cruciform canards and a cylindrical afterbody with cruciform fins in line 
with the canards.   The canards at 4> - 90 and 270 deg could be pitched at 
angles from 0 to 15 deg.    The canards at 9&" = 0 and 180 deg were fixed at 
zero inclination with the model centerline.    A spacer was provided to locate 
the balance pivot axis 12.00 in. aft of the model nose (xcg/ü = =0.522),  and 
ballast was added to locate the model center of gravity exactly at the balance 
pivot. 

2.3 STING-BALANCE SYSTEM 

The dynamic stability balance (Fig.   3) is a one-degree-of-freedom, 
free oscillation,   sting-supported system incorporating a cross flexure 
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as the pivot.    The balance was designed for an initial displacement 
amplitude of about 3 deg;  however,  the model geometry limited the 
displacement to slightly above 2 deg.    The model could be locked re- 
motely by means of the locking device shown in Fig.   3 which was 
actuated by a solenoid located in the aft portion of the sting.    The model 
was locked when the pin on the locking device engaged a hole in the 
model bulkhead (Fig.  4). 

Figure 4 shows the oscillating air system which was used to dis- 
place the model.    The driving force was obtained from a high pressure 
air supply which could be adjusted to the pressure level necessary to 
overcome the damping moment on the model by means of a pressure 
regulator.    The model was oscillated by bursts of air alternately emitted 
from two jets by an oscillating servo valve at a frequency which could be 
varied remotely by means of a low frequency oscillator.    The driving 
force could be stopped abruptly by a remotely operated solenoid valve. 

SECTION III 
PROCEDURE 

The equation of motion for a free oscillation,   one-degree-of-freedom 
system may be expressed as 

\Q  - MQ6 - lAßd = 0 

The method for computing the dimensionless damping-in-pitch derivatives 
is indicated by the following expressions: 

- -,        (Mä/2l)t      .        .—n—7T 
0   =   0„ e       P sin V- Mfl/I V-IVJ0/ 

M 21  lin  B 6   '" <*„ 

M k  = Mfl    - Mfl    ( CO y /  <Ovi . 

Cmq  + Cra-  = Me(2Vo0/qecAd ) 

The expression for obtaining the aerodynamic viscous-damping-moment 
parameter (M^) is based on the premise that the structural damping of 
a cross-flexure pivot varies inversely with the frequency of oscillation 
(Ref.  3). 

The change in model oscillation frequency from the wind-off to the 
wind-on condition may be used to obtain the effective slope of the 
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pitching-moment curve by the following expressions: 

Ma   -   -   I (fUw2   -   <vv2) 

Cm0  =  Mfl/q« Ad 

The test procedure for obtaining the data was to adjust the oscil- 
lator and pressure regulator (Fig.  4) until the air jets were forcing 
the model at its undamped natural frequency and required amplitude. 
The solenoid valve was then closed,  which allowed the model to oscil- 
late freely.    The oscillatory motion of the model,  monitored by a 
strain-gage bridge on the outside flexure (Fig.  3),  was recorded by a 
direct writing oscillograph.    A signal to indicate the exact time at which 
the solenoid was closed was also recorded on the oscillograph. 

SECTION IV 
PRECISION OF MEASUREMENTS 

The balance was calibrated during bench tests before and after 
testing.    The calibrations were obtained by use of known moments and 
displacements which were accurate within ±1 percent of their maximum 
value. 

Both the damping-in-pitch derivatives (Cm   + Cm. ) and the effec- 
tive slope of the pitching-moment curve (Cm«) are affected by the un- 
certainties in determining the model moment of inertia (I),   angular 
frequency of oscillation (u),   and tunnel free-stream dynamic pressure 
(q^).    The damping derivatives are also affected by uncertainties in the 
amplitude ratio (R),   the number of cycles to damp to this ratio (Cy-p,), 
andthe free-stream velocity (VB). 

As a result of the above sources of error,   the estimated maximum 
uncertainties in Cm    + Cm-  amd Cm. are given in Fig.   5. 
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SECTION V 
RESULTS AND DISCUSSION 

Figure 6 shows the effect of canard deflection angle (6) on the 
damping-in-pitch derivatives (Cm   + Cm. ) and effective slope of the 

pitching-moment curve (Cmg) at the model trim angle of attack at 
Mach numbers of 1. 49,   1.99,   2.48,   2.99,   and 3. 99.    Increasing 6 has 
no appreciable effect on Cm   + Cm- but increases Cm    except for 

Mach 3. 99,   where Cm    is practically invarient. 

Data from Fig.   6 have been plotted in Fig.   7 to show the influence 
of Mach number for a given canard deflection angle.    The results show 
that the damping derivatives decrease as Mach number increases for 
all canard deflection angles,   and the model is dynamically stable at all 
conditions.    For all canard deflection angles other than zero the model 
is statically stable and the effective slope of the pitching-moment curve 
decreases,  to make the model less stable,  as Mach number is increased. 
Increasing Mach number increases the model's static stability for zero 
canard deflection and shows the model to be unstable at Mach 1, 5 and 2. 

The pitching-moment curve slope data (Cm  ),  from Ref.   1,   for zero 
canard deflection are shown in Fig.   7 and are not in good agreement with 
the present data.    In fact,  the present data indicate that a slope reversal 
occurs in the pitching-moment curves between angles of attack of ±1 deg 
atM,= 1.5 and 2. 

The data from the static force tests were obtained at -1 £ a > 2 and 
show some nonlinearities in the pitching moment near zero angle of attack. 
The pitching-moment curve slopes (CmJ obtained in the dynamic stability 
tests correspond to the effective moment for an amplitude range of 
±1. 5 deg which encompasses the region of the nonlinearity.    Although not 
presented here,   static-moment data from the dynamic stability tests show 
that the nonlinearity in the pitching moment decreases with increased Mach 
number,  and thus it would be expected that the data from Ref.   1 would be in 
better agreement with the present results at the higher Mach numbers. 

It is believed,  however,   that if the static-force data were obtained over 
a smaller angle-of-attack range near a = 0 the results would be in better 
agreement with the present data. 

Figure 8 shows the model trim angle-of-attack (ot) variation with 
Mach number for canard deflection angles of 5,   10,   and 15 deg and data 
from Ref.   1.    The agreement is believed to be within the accuracy of the 
two balance systems. 
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TABLE I 
TEST SUMMARY 

6,   deg 

0 

M„ 

10 

IS 

1.49 
1. 99 
2.48 
2. 99 
3. 99 
1. 49 
1. 99 
2.48 
2.99 
3. 99 
1.49 
1. 
2. 
2. 
3. 

99 
48 
99 
99 

1. 49 
1.99 
2.48 
2. 99 
3. 99 

Rejj x 10 

7. 7 
8. 1 
7. 9 
8.2 
8.0 
7.8 
8.0 
7.9 
8.2 
7. 8 
7. 8 
8. 1 
7.9 
8.3 
8. 1 
7.8 
8.0 
7.9 
8.4 
7.9 

-6 a,   deg* 

-1. 9, 0,   2.1 
-1. 9, 0,   2.1 
-1.9, 0,   2. 1 
-1. 9, 0,   2.1 
-1. 9, 0,   2.1 

5. 6, 6.6,7.6 
4.2, 5.2, 6. 1 
2. 1, 4.2, 6. 1 
2. 2, 4.2,6. 1 
2.6, 4. 6, 6. 6 
7. 1, 8. 1, 9. 1 
6. 1, 7. 1, 8.2 
5.2, 6. 1, 7. 1 
5. 3, 6. 3, 7.2 
6. 1, 7. 1, 8. 1 
7.9, 9. 0, 9. 9 
7.2, 8.2, 9.2 
6. 6, 7. 6, 8.5 
7. 1, 8. 1, 9. 1 

10.1, 11.1,   12.0 

"Note: The trim angle of attack is the middle column. 
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